

Designation: D2502 - 04 (Reapproved 2009)

Standard Test Method for Estimation of Mean Relative Molecular Mass of Petroleum Oils from Viscosity Measurements¹

This standard is issued under the fixed designation D2502; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers the estimation of the mean relative molecular mass of petroleum oils from kinematic viscosity measurements at 100 and 210°F (37.78 and 98.89°C).² It is applicable to samples with mean relative molecular masses in the range from 250 to 700 and is intended for use with average petroleum fractions. It should not be applied indiscriminately to oils that represent extremes of composition or possess an exceptionally narrow mean relative molecular mass range.
- 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:³

D445 Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)

2.2 ASTM Adjuncts:

Mean Relative Molecular Mass of Petroleum Oils from Viscosity Measurements⁴

3. Summary of Test Method

3.1 The kinematic viscosity of the oil is determined at 100 and 210°F (37.78 and 98.89°C). A function "H" of the 100°F viscosity is established by reference to a tabulation of H function versus 100°F viscosity. The H value and the 210°F viscosity are then used to estimate the mean relative molecular mass from a correlation chart.

4. Significance and Use

- 4.1 This test method provides a means of calculating the mean relative molecular mass of petroleum oils from another physical measurement.
- 4.2 Mean relative molecular mass is a fundamental physical constant that can be used in conjunction with other physical properties to characterize hydrocarbon mixtures.

5. Procedure

- 5.1 Determine the kinematic viscosity of the oil at 100 and 210°F (37.78 and 98.89°C) as described in Test Method D445.
- 5.2 Look in Table 1 for $100^{\circ}F$ (37.78°C) viscosity and read the value of H that corresponds to the measured viscosity. Linear interpolation between adjacent columns may be required.
- 5.3 Read the viscosity–mean relative molecular mass chart for *H* and 210°F (98.89°C) viscosity. A simplified version of this chart is shown in Fig. 1 for illustration purposes only (Note 1). Interpolate where necessary between adjacent lines of 210°F viscosity. After locating the point corresponding to the

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.04.0K on Correlative Methods.

Current edition approved Oct. 1, 2009. Published November 2009. Originally approved in 1966. Last previous edition approved in 2004 as D2502–04. DOI: 10.1520/D2502-04R09.

² Hirschler, A. E., *Journal of the Institute of Petroleum*, JIPEA, Vol 32, 1946, p. 133.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from ASTM International Headquarters. Order Adjunct No. ADID2502

TABLE 1 Tabulation of H Function

Kinematic Viscosity, cSt at 100°F (37.78°C)					Н						
	()	0	.2	0.	4	0	.6	0	.8	
2		-178		-151		26	-104		-85		
3	-67		-52		-38		-25		-13		
4	-1		9		19		28		36		
5	44		52		59 90		66 96			73 101	
6 7	79 106		85 111		116		120		124		
8	128		132		136		140			144	
9	147		151		154		157			60	
10	163		166		169		1	72	1	75	
11		178		180		183		185		188 199	
12		190		192		195		197		199 210	
13 14	201		203 213		206 215		208 217			219	
15	211 221		222		224		226		227		
16	229			231		232		234		235	
17	237		238		240		241		243		
18	24			45		247		248		49	
19	251		252		253		255		256		
20 21	25		258		259 265		261 266		262 267		
22		263 269		264 270		265 271		266 272		267 273	
23	269 274		275		276		277		278		
24	279		280		281		281		282		
25		283		284		285		286		287	
26		288		289		289		290		291	
27		292 296		293		294		294		295	
28 29	30		297 301		298 301		298 302		299 303		
30	30		304		305		306		306		
31	30		308		308		309		310		
32	31	10	3	311		312		312		313	
33	31		314		315		316		316		
34	317		317		318		319			319 322	
35 36	320 323		320 323			321 324		322 325		22 25	
37	323 326		326		327		327			28	
38	328		329		329		330			31	
39	331		332		332		333		333		
					Н						
	0	1	2	3	4	5	6	7	8	9	
40	334	336	339	341	343	345	347	349	352	354	
50	355	357	359	361	363	364	366	368	369	371	
60	372	374	375	377	378	380	381	382	384	385	
70	386	387	388	390	391	392	393	394	395	397	
80	398	399	400	401	402	403	404	405	406	407	
90 100	408 416	409 417	410 418	410 419	411 420	412 420	413 421	414 422	415 423	415 423	
110	424	425	425	419	420 427	420	421	422	423	430	
120	431	432	432	433	433	434	435	435	436	437	
130	437	438	438	439	439	440	441	441	442	442	
140	443	443	444	444	445	446	446	447	447	448	
150	448	449	449	450	450	450	451 450	451 450	452	452	
160 170	453 457	453 458	454 458	454 459	455 459	455 460	456 460	456 460	456 461	457 461	
180	461	462	458 462	459 463	459 463	463	460 464	464	465	465	
190	465	466	466	466	467	467	468	468	468	469	
					Н						
	0	10	20	30	40	50	60	70	80	90	
200											
200 300	469 497	473 499	476 501	479 503	482 505	485 507	487 509	490 511	492 512	495 514	
400	515	517	518	520	521	523	524	525	527	528	
500	529	530	531	533	534	535	536	537	538	539	
600	540	541	542	543	544	545	546	547	547	548	
700	549	550	551	551	552	553	554	554	555	556	
800 900	557 563	557 564	558 565	559 565	559 566	560 566	561 567	562 567	562 568	563 569	
900		304	202	505	300	000	507	567	308	509	

TABLE 1 Continued

Kinematic Viscosity, cSt at 100°F (37.78°C)	н										
	Н										
-	0	100	200	300	400	500	600	700	800	900	
1 000	569	574	578	583	587	591	594	597	600	603	
2 000	605	608	610	612	614	616	618	620	621	623	
3 000	625	626	628	629	631	632	633	634	636	637	
4 000	638	639	640	641	642	643	644	645	646	647	
5 000	648	649	650	651	652	652	653	654	655	656	
6 000	656	657	658	658	659	660	660	661	662	662	
7 000	663	664	664	665	665	666	666	667	667	668	
8 000	668	669	670	670	671	671	671	672	672	673	
9 000	673	674	674	675	675	676	676	677	677	677	
-	Н										
-	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	
10 000	678	681	684	688	691	694	696	699	701	703	
20 000	705	707	709	711	712	714	715	717	718	719	
30 000	720	722	723	724	725	726	727	728	729	730	
40 000	731	732	732	733	734	735	736	736	737	738	
50 000	739	739	740	741	741	742	743	743	744	744	
60 000	745	746	746	747	747	748	748	749	749	750	
70 000	750	751	751	752	752	753	753	753	754	754	
80 000	755	755	756	756	756	757	757	758	758	758	
90 000	759	759	759	760	760	760	761	761	761	762	
100 000	762	762	763	763	763	764	764	764	764	765	

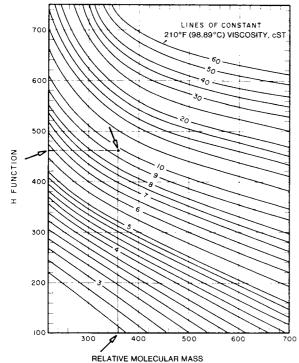
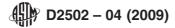


FIG. 1 Viscosity-Mean Relative Molecular Mass Chart

value of H (ordinate) and the $210^{\circ}\mathrm{F}$ viscosity (superimposed lines), read the mean relative molecular mass along the abscissa.

Example: Measured viscosity, cSt: $100^{\circ}F (37.78^{\circ}C) = 179$ $210^{\circ}F (98.89^{\circ}C) = 9.72$ Look in Table 1 for 179 and read the corresponding value H = 461.


Using H = 461 and 210° F viscosity = 9.72 in conjunction with chart gives mean relative molecular mass = 360 (see Fig. 1).

Note 1—A 22 by 28-in. (559 by 711-mm) chart available as an adjunct to this test method was used in cooperative testing of the method. If other charts are used, the precision statements given in the Precision section will not apply.

5.4 Report the mean relative molecular mass to the nearest whole number.

6. Precision and Bias

- 6.1 The precision of this test method as obtained by statistical examination of interlaboratory test results is as follows:
- 6.1.1 Repeatability—The difference between successive test results obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the value 3 only in one case in twenty.
- 6.1.2 Reproducibility—The difference between two single and independent results, obtained by different operators, working in different laboratories on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the value 25 only in one case in twenty.
- 6.2 *Bias*—Since there is no accepted reference material suitable for determining bias for this test method, no statement of bias can be made.
- 6.3 The precision for this test method was not obtained in accordance with D02-1007, "Manual on Determining Precision Data for ASTM Methods on Petroleum Products and Lubricants."

7. Keywords

7.1 kinematic viscosity; mean relative molecular mass; petroleum oils

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).