Designation: D 3239 – 91 (Reapproved 2006)

Standard Test Method for Aromatic Types Analysis of Gas-Oil Aromatic Fractions by High Ionizing Voltage Mass Spectrometry¹

This standard is issued under the fixed designation D 3239; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method² covers the determination by high ionizing voltage, low resolution mass spectrometry of 18 aromatic hydrocarbon types and 3 aromatic thiophenotypes in straight run aromatic petroleum fractions boiling within the range from 205 to 540°C (400 to 1000°F) (corrected to atmospheric pressure). Samples must be nonolefinic, must contain not more than 1 mass % of total sulfur, and must contain not more than 5 % nonaromatic hydrocarbons. Composition data are in volume percent.

Note 1—Although names are given to 15 of the compound types determined, the presence of other compound types of the same empirical formulae is not excluded. All other compound types in the sample, unidentified by name or empirical formula, are lumped into six groups in accordance with their respective homologous series.

- 1.2 The values stated in acceptable SI units are to be regarded as the standard. The values given in parentheses are provided for information purposes only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards: ³
- D 2549 Test Method for Separation of Representative Aromatics and Nonaromatics Fractions of High-Boiling Oils by Elution Chromatography
- D 2786 Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry

E 137 Practice for Evaluation of Mass Spectrometers for Quantitative Analysis from a Batch Inlet⁴

3. Terminology

- 3.1 Definitions of Terms Specific to This Standard:
- 3.1.1 Characteristic Mass Summations— Classes I-VII:
- 3.1.2 *Class I*:

$$\Sigma 78 = 78 + 92 + 106 + 120 + ...$$
to end, polyisotopic
+ 91 + 105 + 119 + ...to end, monoisotopic (1)

3.1.3 Class II:

$$\Sigma 104 = 104 + 118 + 132 + 146 + ...$$
to end, polyisotopic + 117 + 131 + 145 + ...to end, monoisotopic (2)

3.1.4 Class III:

$$\Sigma 129 = 130 + 144 + 158 + 172 + ...$$
to end, polyisotopic + $129 + 143 + 157 + 171 + ..$ to end, monoisotopic (3)

3.1.5 Class IV:

$$\Sigma 128 = 128 + 142 + 156 + 170 + ...$$
to end, polyisotopic + 141 + 155 + 169 + ...to end, monoisotopic (4)

3.1.6 Class V:

$$\Sigma 154 = 154 + 168 + 182 + 196 + ...$$
to end, polyisotopic + 167 + 181 + 195 + ...to end, monoisotopic (5)

3.1.7 Class VI:

$$\Sigma 166 = 166 + 180 + 194 + 208 + ...$$
to end, polyisotopic + 179 + 193 + 207 + ...to end, monoisotopic (6)

3.1.8 Class VII:

$$\Sigma 178 = 178 + 192 + 206 + 220 + ...$$
to end, polyisotopic + 191 + 205 + 219 + ...to end, monoisotopic (7)

3.1.9 Classes, Compound Types, Empirical Formulae—See Table 1.

4. Summary of Test Method

4.1 The relative abundance of seven classes (I–VII) of aromatics in petroleum aromatic fractions is determined by mass spectrometry using a summation of peaks most characteristic of each class. Calculations are carried out by the use of a 7 by 7 inverted matrix derived from published spectra of pure aromatic compounds. Each summation of peaks includes the

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.04 on Hydrocarbon Analysis.

Current edition approved May 1, 2006. Published June 2006. Originally approved in 1973. Last previous edition approved in 2001 as D 3239 – 91 (2001).

² Robinson C. L. and Cook G. L. Analytical Chemistry (ANCHA) Vol 41

² Robinson, C. J., and Cook, G. L., *Analytical Chemistry* (ANCHA), Vol 41, 1969, p. 1548.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Withdrawn.

TABLE 1 Classes, Compound Types, and Empirical Formulae

	· ·	71 / 1
Class	Type	Formula
1	0	alkylbenzenes, C _n H _{2n-6}
1	1	benzothiophenes, C _n H _{2n-10} S
1	2	naphthenephenanthrenes,
		C_nH_{2n-20}
II	0	naphthenebenzenes, C _n H _{2n-8}
II	1	pyrenes, C _n H _{2n-22}
II	2	unidentified
III	0	dinaphthenebenzenes, C_nH_{2n-10}
III	1	chrysenes, C _n H _{2n-24}
III	2	unidentified
IV	0	naphthalenes, C_nH_{2n-12}
IV	1	dibenzothiophenes, C _n H _{2n-16} S
IV	2	unidentified
V	0	acenaphthenes + dibenzofurans,
		C_nH_{2n-14} and $C_nH_{2n-16}O$
V	1	perylenes, C _n H _{2n-28}
V	2	unidentified
VI	0	fluorenes, C _n H _{2n-16}
VI	1	dibenzanthracenes, C _n H _{2n-30}
VI	2	unidentified
VII	0	phenanthrenes, C_nH_{2n-18}
VII	1	naphthobenzothiophenes, C_nH_{2n}
		22 S
VII	2	unidentified

polyisotopic homologous series that contains molecular ions and the monoisotopic homologous series one mass unit less than the molecular ion series. Using characteristic summations found in the monoisotopic molecular ion—1 series of peaks, each class is further resolved to provide relative abundances of three compound types: nominal (Type 0), first overlap (Type 1), and second overlap (Type 2). The aromatic fraction is obtained by liquid elution chromatography (see Test Method D 2549).

Note 2—Monoisotopic peaks heights are obtained by correcting the polyisotopic heights for naturally occurring heavy isotopes, assuming that only ions of C_nH_{2n+2} to C_nH_{2-11} are present. This is not strictly accurate for aromatics, but the errors introduced by such assumption are trivial.

5. Significance and Use

5.1 A knowledge of the hydrocarbon composition of process streams and petroleum products boiling within the range 205 to 540°C (400 to 1000°F) is useful in following the effect of changes in process variables, diagnosing the source of plant upsets, and in evaluating the effect of changes in composition on product performance properties. This method, when used together with Test Method D 2786, provides a detailed analysis of the hydrocarbon composition of such materials.

6. Apparatus

- 6.1 *Mass Spectrometer*—The suitability of the mass spectrometer to be used with this method shall be proven by performance tests described both herein and in Practice E 137.
- 6.2 Sample Inlet System—Any inlet system may be used that permits the introduction of the sample without loss, contamination, or change in composition. The system must function in the range from 125 to 350°C to provide an appropriate sampling device.
 - 6.3 Microburet or Constant-Volume Pipet.
- 6.4 Mass Spectrum Digitizer—It is recommended that a mass spectrum digitizer be used in obtaining the analysis,

because it is necessary to use the heights of most of the peaks in the spectrum. Any digitizing system capable of supplying accurate mass numbers and peak heights is suitable.

6.5 Electronic Digital Computer—The computations for this analysis are not practical without the use of a computer. Any computer capable of providing approximately 60 K bytes in core and capable of compiling programs written in FORTRAN IV should be suitable.

7. Reagent

7.1 *n-Hexadecane*. (**Warning**—Combustible-Very harmful.)

8. Calibration

- 8.1 Calibration equations in the computer program given in Table 2 may be used directly provided the following procedures are followed:
- 8.1.1 *Instrumental Conditions*—Repeller settings are adjusted to maximize the m/e 226 ion of n-hexadecane. A magnetic field is used that will permit a scan over the mass range from 78 to 700. An ionizing voltage of 70 eV and an ionizing current in the range from 10 to 70 μ A is used.

Note 3—The instrument conditions and calibration equations described in this method are based on the use of a 180° magnetic-deflection type mass spectrometer (CEC Model 21-103). Satisfactory results have been obtained with some other magnetic deflection instruments. It is not known if the equations are suitable for use on all other mass spectrometer types.

- 8.1.2 Computer Program—The FORTRAN program given in Table 2 contains all the equations for calculating the analysis, including those for calculating monoisotopic peak heights. The program is compiled and linked to create a computer load module that is available whenever needed. When the spectrum shown in Table 3 is processed, thee results should agree with those shown in Table 4.
- 8.1.2.1 *Data Input Format*—The input format suggested in the main program may be changed to suit the needs of individual laboratories provided that true masses and peak heights are stored in the H(M) array.
- 8.1.2.2 FORTRAN IV Language—Changes in the program may be required for compatibility with the particular computing system to be used. These are permitted provided that the altered program gives the results shown in Table 4 with the input data of Table 3.

Note 4—The program, as shown in Table 2, has run satisfactorily on IBM System 360 computers.

9. Procedure

- 9.1 If the mass spectrometer has been in continuous operation, no additional preparation is necessary before analyzing samples. However, if the spectrometer has been turned on only recently, check its operation according to the manufacturer's instructions to ensure stability before proceeding.
- 9.2 Obtain the mass spectrum of the sample, scanning from mass 76 to the high-mass end of the spectrum.

TABLE 2 High Ionizing Voltage, Low Resolution Mass Spectrometric Analysis of Gas Oil Aromatic Fractions

* The "end statement" designated is specific for IBM computers. The user may modify the FORTRAN program to suit his individual needs. IN THIS PROGRAM THE VARIARLE "H(M)" REPRESENTS THE HEIGHT OF THE C POLYISOTOPIC PEAK AT MASS M. THE VARIABLE "HDI(M)" IS THE HEIGHT C OF THE DEISOTOPED PEAK AT MASS M. THIS IS A POSSIBLE MAIN PROGRAM THAT READS INPUT DATA AND CALLS FIRST THE DEISOTOPING ROUTINE "SUBROUTINE DEISO" AND THEN THE C CALCULATING AND REPORTING ROUTINE "SUBROUTINE AROMTO". COMMON TITLE(20) + H(758) + H0I(758) DIMENSION MASS(8) + HITE(8) 1 READ(5:10:END=99)(TITLE(I):I=1:20) 10 FORMAT (20A4) A TITLE CARD FOR SAMPLE NAME, ETC. PRECEDES SPECTRAL DATA CARDS. C FORMAT FOR TITLE IS 20A4 (20 4-CHARACTER WORDS IN 80 COLUMNS). C FORMAT FOR SPECTRAL DATA IS MASS (16) FOLLOWED BY HEIGHT (F4.0) WITH 8 PEAKS PER 80-COLUMN CARD. C DO 20 I=12.758 H(I) = 0.0 $20 \, HDI(I) = 0.0$ 30 READ (5+40) (MASS(I)+HITE(I)+I=1+8) 40 FORMAT(8(16.F4.0)) DO 50 I=1.8 IF (MASS(I) .EQ. 999999) GO TO 60 ENTER "999999" IN A MASS POSITION ON A CARD TO DENOTE SPECTRUM END. С IF (MASS(I).EQ.0)GO TO 50 M = MASS(I)H(M) = HITE(I)50 CONTINUE GO TO 30 60 CALL DEISO CALL AROMTO GO TO 1 С "GO TO 1" ALLOWS SUCCESSIVE SAMPLES TO BE COMPUTED BEFORE RELEASING COMPUTER. C C 99 STOP **END** SURROUTINE DEISO THIS SUBROUTINE COMPUTES MONOISOTOPIC PEAKS ASSUMING ALL IONS HAVE С Z NUMBERS FROM +2 TO -11 IN THE FORMULA C(N)H(2N + Z). С COMMON TITLE(20), H(758), HDI(758) DIMENSION NCAPB (758) + NHYD (758) DO 10 I=12.758 NCARB(I) = 010 NHYD(I) = 0DO 20 K=12.758 NCARB(K) = (K + 11)/14NHYD(K) = K - 12*NCARB(K)IF(NHYD(K).LT.0)NHYD(K) = 020 CONTINUE DO 30 K=14.758 HDI(K) = H(K)-HDI(K-1)*(.010811*FLOAT(NCARB(K-1))+.00015*FLOAT 1 (NHYD (K-1))) HDJ(K) = HDI(K) + HDI(K-2) * (.00005844 * FLOAT(NCARB(K-2) * (1-NCARB(K-2)) * (1-NCARB(K-2)) * (1-NCARB(K-2) * (1-NCARB(K-2)) * (1-NCARB(K-21))+.1125E-7*FLOAT(NHYD(K-2)*(1-NHYD(K-2)))-.162165E-5*FLOAT(NCARB(2K-S) #NHYD (K-S))) $IF(HDI(K) \cdot LT \cdot 0 \cdot 0) + DI(K) = 0 \cdot 0$ 30 CONTINUE RETURN FND

```
SUBROUTINE AROMTO
  THIS ROUTINE GIVES THE ANALYSIS OF AROMATICS FRACTIONS FROM PETROLEUM
С
    USING THE PROCEDURE DESCRIBED IN ANAL CHEM 41, 1548-54 (1969)
С
C
       COMMON TITLE(20) + H(758) + HDI(758)
       DIMENSION AIN(7,7), BA(7), BB(7), SR(758)
       DATA AIN /+1.8094,-.1952,+.0124,-.0027.-.0015,-.0011.-.0028.
                  --1601+2.0479+-.2806+-.0401++.0082++.0012++.0000+
                   -.0943,-.2287,+2.3024,-.4935,-.0601,-.0155,-.0089,
                   -.0292,+.0033,-.0580,+1.9404,-.1337,-.0117,-.0043,
                   -.0022,-.0003,-.0026,-.0195,+1.9773,-.1823,+.0123,
                   -.0420,+.0026,-.0018,-.0151,-.0584,+2.0616,-.4193,
                   --2346,--1069,--0267,--0019,--0057,--0904,+1.9904/
c
       INITIALIZE SQUARE ROOT ARRAY
С
       DO 2132 I=12.750
 2132 SR(I) = 0.0
       ASSEMBLE APPROPRIATE PEAKS IN MASS SPECTRUM OF AROMATIC FRACTION FOR PROCESSING IN A 7 X 7 MATRIX. QUANTITIES A6.47.48.ETC. REFER
C
C
C
        INITIALLY TO SUMS OF PEAKS AT Z NUMBERS 6,7,8,ETC. A6,A8,ETC. ARE
C
        LATER REDEFINED TO INCLUDE THE ODD Z-NUMBER SUM CORRESPONDING TO
        THE PARENT-1 SERIES (A6 = A6 + A7, A8 = A8 + A9, ETC.)
       DO 2106 M=78,750,14
 2106 \ A6 = A6 + H(M)
       A7 = 0.0
 DO 2107 M=91.750,14
2107 A7 = A7 + HDI(M)
       A6 = A6 + A7
       0.0 = 8A
       DO 2108 M=104,750,14
 2108 A8 = A8 + H(M)
       A9 = 0.0
       DO 2109 M=117,750,14
 2109 A9 = A9 + HDI(M)
       A8 = A8 + A9
       A10 = 0.0
       DO 2110 M=130,750,14
 2110 \text{ Al0} = \text{Al0} + \text{H(M)}
       A11 = 0.0
       DO 2111 M=129,750,14
 2111 \ A11 = A11 + HDI(M)
       A10 = A10 + A11
       A12 = 0.0
       DO 2112 M=128,750,14
 2112 \text{ A12} = \text{A12} + \text{H(M)}
       A13 = 0.0
       DO 2113 M=141+750+14
 2113 \text{ A}13 = \text{A}13 + \text{HDI}(\text{M})
       A12 = A12 + A13
       A14 = 0.0
      DO 2114 M=154+750+14
2114 \text{ A}14 = \text{A}14 + \text{H}(\text{M})
      A15 = 0.0
      DO 2115 M=167,750,14
2115 \text{ A15} = \text{A15} + \text{HDI(M)}
      A14 = A14 + A15
      A16 = 0.0
      DO 2116 M=166.750.14
2116 \text{ A}16 = \text{A}16 + \text{H}(\text{M})
      \overline{A17} = 0.0
      DO 2117 M=179.750.14
2117 \text{ A17} = \text{A17} + \text{HDI(M)}
      A16 = A16 + A17
      A18 = 0.0
      DO 2118 M=178,750.14
2118 \text{ Al8} = \text{Al8} + \text{H(M)}
      A19 = 0.0
      DO 2119 M=191,750,14
```

```
2119 \text{ A19} = \text{A19} + \text{HDI(M)}
      A18 = A18+ A19
c
      CORRECT THE PEAK SUMS FOR THE PRESENCE OF IRRELEVANT IONS AT
C
        MASSES 175+176+189+190+200+213
C
      CDI175 =HDI(161) - (HDI(161) -HDI(203))/3.0
      IF (HDI (175) . GE. CDI 175) GO TO 1046
      CD1175 = HDI(175)
C
С
      ABOVE STATEMENTS CORRECT HDI(175)
      NEXT STATEMENTS CORRECT H(176)
С
C
 1046 \text{ CH176} = \text{H(162)-(H(162)-H(204))/3.0}
      IF(H(176).GE.CH176)GO TO 1048
      CH176 = H(176)
C
      NEXT STATEMENTS CORRECT HDI(189)
C
C
 1048 CDI189 = CDI175 - (CDI175-HDI(203))/2.0
      IF(HDI(189).GE.CDI189)GO TO 1049
      CDI189 = HDI(189)
C
      NEXT STATEMENTS CORRECT H(190)
С
 1049 \text{ CH190} = \text{CH176-(CH176-H(204))/2.0}
      IF(H(190).GE.CH190) GO TO 2101
      CH190 = H(190)
С
      NEXT STATEMENTS CORRECT H(200)
C
С
 2101 \text{ CH200} = (H(186) + H(214))/2.0
      IF(H(200).GE.CH200) GO TO 2102
      CH500 = H(500)
С
C
      NEXT STATEMENTS CORRECT HDI(213)
C
 2102 CDI213 = (HDI(199)+HDI(227))/2.0
       IF (HDI (213) • GE • CDI213) GO TO 2103
       CD1213 = HDI(213)
С
       NEXT STATEMENTS CORRECT THE A6.48.ETC. SUMS
С
 2103 A6 =A6-(HDI(175)+HDI(189) +H(176)+H(190))
      1 +CDI175 +CDI189+ CH176+ CH190
       A10 = A10-(H(200)+HDI(213))+CH200+CDI213
       REDEFINE A5:48:ETC. AS SUBSCRIPTED VARIABLE AND MULTIPLY BY THE
C
С
       AROMATICS INVERSE AIN(I,J)
       BA(1) = A6
       BA(2) = A8
       BA(3) = A10
       BA(4) = A12
       BA(5) = A14
       BA(6) = A16
       BA(7) = A18
       00 2125 J=1.7
       BB(J)=0.0
       DO 2124 I=1.7
 2124 BB(J)=BB(J)+BA(I)*AIN(J,I)
 2125 CONTINUE
       00 2127 J=1.7
       IF(BB(J))2126,2127,2127
 2126 BB(J)=0.0
 2127 CONTINUE
       AA6 = BB(1)
       AAB = BB(2)
       AA10 = BB(3)
       AA12 = 88(4)
       AA14 = BB(5)
       AA16 = BB(6)
       AA18 = BB(7)
       SUMAA = 0.0
       DO 2128 J=1.7
```

```
2128 SUMAA = SUMAA+RB(J)
С
      VALUES OF AA6+AA8+ETC. ARE DIVISIONS CALCULATED FOR NOMINAL Z=-6+
¢
       -A.ETC. SUMAA IS SUM OF THE AA VALUES AND REPRESENTS THE TOTAL
       DIVISIONS OF AROMATICS CALCULATED.
      THE FOLLOWING STATEMENTS RESOLVE OVERLAPPING TYPES IN Z = -6+
      A7 = A7-HDI(175)-HDI(189)+CDI175+CDI189
      HDI (175) = CDI175
      HDI (189) = CDI189
      DO 2130 M=105.750.14
      IF (HDI (M))2130,2131,2130
 2130 CONTINUE
 2131 \text{ MM} = M-14
      SLOPE = (((0.72*HDI(105))**0.5) - (HDI(MM))**0.5)/
     1 (90.71-(1000.0/FLOAT(MM))**2)
      B = (0.72 + HDI(105)) + 0.5 - 90.71 + SLOPE
       DO 2133 M=147.MM.14
       REALM = M
  2133 SR(M) = SLOPE*(1000.0/REALM)**2 +8
       AROVE IS FOR Z = -6 AND STORES SQUARE ROOTS OF ALKYL BENZENE PEAK
        HEIGHTS IN ARRAY SR(I) \cdot BELOW IS FOR Z = -8
       DO 2134 M=215.750,14
       IF(HDI(M))2134,2135,2134
  2134 CONTINUE
  2135 MN = M-14
      SLOPE = (((0.66*HDI(173))**0.5)-(HDI(MN))**0.5)/
1 (34.12 -(1000.0/FLOAT(MN))**2)
       B = (0.66 + HDI(173)) + 0.5 - 34.12 + SLOPE
       DO 2136 M=215,MN,14
       REALM = M
  2136 SR(M) = SLOPE*(1000.0/REALM)**2 +B
 ¢
       BELOW IS FOR Z = -10
       A11 = A11 - HOI(213) + CDI213
       HDI(213) = CDI213
       DO 2137 M=241,750,14
       IF (HDI (M)) 2137-2138-2137
  2137 CONTINUE
  2138 MO = M-14
       SLOPE = ((HDI(185)) **0.5-(HDI(MO)) **0.5)/
      1 (29.22-(1000.0/FLOAT(MO))**2)
       B= HDI(185)**0.5 - 29.22*SLOPE
       DO 2139 M=241,MO,14
       REALM = M
  2139 SR(M) = SLOPE*(1000.0/REALM)**2+B
 С
 Č
       BELOW IS FOR Z = -12
 ¢
       DO 2140 M=197.750.14
       IF (HDI (M)) 2140,2141,2140
  2140 CONTINUE
  2141 MP = M-14
       SLOPE = (((0.25*HDI(183))**0.5) - (HDI(MP))**0.5)/
      1 (29.86-(1000.0/FLOAT(MP))**2)
       B = (0.25*HDI(183))**0.5 - 29.86*SLOPE
       DO 2142 M=197.MP.14
       REALM = M
  2142 SR(M) = SLOPE*(1000.0/REALM)**2+8
 C
Č
       RELOW IS FOR Z = -14
C
       DO 2143 M=265.750.14
       IF (HDI (M)) 2143-2144-2143
  2143 CONTINUE
  2144 \text{ MQ} = M-14
       SLOPE = (((0.64*HDI(251))**0.5)-(HDI(MQ))**0.5)/
      1 (15.87-(1000.0/FLOAT(MQ)) **2)
       B = (0.64*HDI(251))**0.5 - 15.87*SLOPE
```

```
DO 2145 M=265,MQ,14
      REALM = M
 2145 SR(M) = SLOPE*(1000.0/REALM)**2+B
      RELOW IS FOR Z = -16
С
      DO 2146 M=291.750.14
      IF (HDI (M)) 2146,2147,2146
 2146 CONTINUE
 2147 MR = M-14
      SLOPE = (((0.7*HDI(277))**0.5)-(HDI(MR))**0.5)/
     1 (13.03-(1000.0/FLOAT(MR))**2)
      B = (0.7*HDI(277))**0.5-13.03*SLOPE
      DO 2148 M=291,MR,14
      REALM = M
 2148 SR(M) = SLOPE*(1000.0/REALM)**2+B
č
      BELOW IS FOR Z = +18
С
      DO 2149 M=247.750.14
      IF(HDI(M) )2149+2150+2149
 2149 CONTINUE
 2150 \text{ MS} = M-14
      SLOPE = (((0.58*HDI(233))**0.5)~(HDI(MS))**0.5)/
     1 (18.42-(1000.0/FLOAT(MS))**2)
      B = (0.58*HDI(233))**0.5-18.42*SLOPE
      DO 2151 M=247,MS,14
      REALM = M
 2151 SR(M) = SLOPE*(1000.0/REALM)**2+8
¢
      THE SQUARE ROOT ARRAY HAS BEEN CALCULATED. FOR CERTAIN SPECTRA IT
С
       MAY BE POSSIBLE TO GET SLOPE AND INTERCEPT VALUES IN REGIONS OF
С
       ZERO PEAK HEIGHT. IF THIS OCCURS, ERRORS MIGHT BE ENTERED IN THE
       SR ARRAY. THE FOLLOWING SETS SR TO ZERO AT MASSES WHERE HDI=0.0
C
      DO 2153 I=12,750
      IF(HDI(I)) 2152,2152,2153
 2152 SR(I) = 0.0
 2153 CONTINUE
С
      THE SR ARRAY IS SQUARED TO GIVE UNCORRECTED PEAK HEIGHTS OF THE
C
С
       NOMINAL Z TYPES
C
      DO 2154 I=12,750
 2154 SR(I) = (SR(I) **2)
С
С
      CORRECT CERTAIN VALUES IN SR(I) FOR NONLINEARITY OF SQ RT RELATION
С
      SR(147) = SR(147)*1.44
      SR(197) = SR(197)*3.10
      SR(211) = SR(211)*2.52
      SR(225) = SR(225)*2.07
      SR(239) = SR(239)*1.83
      SR(253) = SR(253)*1.59
      SR(267) = SR(267)*1.39
      SR(281) = SR(281)*1.28
      SR(295) = SR(295)*1.26
      SR(309) = SR(309)*1.14
      SR(323) = SR(323)*1.06
      SR(265) = SR(265)*1.42
      SR(279) = SR(279)*1.24
      SR(293) = SR(293)*1.12
      SR(307) = SR(307)*1.06
      SR(291) = SR(291)*1.24
      SR(305) = SR(305)*1.15
      SR(319) = SR(319)*1.07
      SR(333) = SR(333)*1.06
      SR(347) = SR(347)*1.05
      SR(361) = SR(361)*1.03
      SR(247) = SR(247)*1.61
      SR(261) = SR(261)*1.50
      SR(275) = SR(275)*1.44
      SR(289) = SR(289)*1.37
      SR(303) = SR(303)*1.28
```

```
SR(317) = SR(317)*1.28
       SR(331) = SR(331)*1.21
       SR(345) = SR(345)*1.10
       SR(359) = SR(359)*1.09
       SR(373) = SR(373)*1.07
       SR(387) = SR(387)*1.05
C
C
       IT IS NECESSARY THAT NO VALUE SR(M) EXCEEDS THE CORRESPONDING
С
        VALUE HDI(M)
       DO 2156 M=12.750
       IF (SR (M) -HDI (M))2156,2156,2155
 2155 SR(M) = HDI(M)
 2156 CONTINUE
C
       CALCULATE PORTIONS OF A7 DUE TO A6A, A10S, A20A AND OTHER TYPES
С
       A6A = 0.0
      DO 2157 M=91+133+14
 2157 \text{ AGA} = \text{AGA+HDI(M)}
      DO 2158 M=147.MM.14
 2158 \text{ A6A} = \text{A6A+SR(M)}
       A105 = 0.0
      DO 2159 M=147.189.14
 2159 \text{ Alos} = \text{Alos} + \text{HDI(M)} - \text{SR(M)}
      A10S = A10S/.75
       A20A = A7-A6A-A10S
      IF (A20A) 2160+2161+2161
 2160 A20A = 0.0
      A105 = A7-A6A
 2161 CONTINUE
C
      CALCULATE DIVISIONS OF A6A, A10S, AND A20A
C
      TRASH = (A6-AA6*.5579)*(A7/A6)
      IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0.0
       A7 = A7 - TRASH
      IF(A7.LE.0.0)A7 = 1.0
      A6A = A6A - TRASH
      IF (46A.LT.0.0) A6A = 0.0
      IF (A6A.EQ.0.0) A7=A10S+A20A
      A64 = (A6A/A7) *AA6
      Alos = (Alos/A7)*AA6
      A20A = (A20A/A7)*AA6
      CALCULATE PORTIONS OF A9 DUE TO A8A, A22A, AND OTHER TYPES
      ABA = 0.0
      DO 2162 M=117.201.14
 2162 A8A = A8A+HDI(M)
      DO 2163 M=215.MN.14
 2163 A8A = A8A + SR(M)
      0.0 = ASSA
      DO 2164 M=215,257,14
 2164 \ A22A = A22A + HDI(M) - SR(M)
      A22A = A22A/.75
      A36A = A9-A8A-A22A
      IF(A36A)2165.2166.2166
 2165 A36A = 0.0
      422A = A9-A8A
2166 CONTINUE
c
      CALCULATE DIVISIONS OF A8A, A22A, AND OTHER TYPES
      TRASH = (AR-AAR*.4997)*(A9/AR)
      IF(TRASH_{\bullet}LT_{\bullet}O_{\bullet}O)TRASH = 0.0
      A9 = A9 - TRASH
      IF(A9.LE.0.0)A9 = 1.0
      ABA = ABA - TRASH
      IF(A8A \cdot LT \cdot 0 \cdot 0)A8A = 0 \cdot 0
      IF (A8A.EQ.0.0) A9=A22A+A36A
      ARA = (A8A/A9) *AAR
      A22A = (A22A/A9)*AAR
      A36A = (A36A/A9)*AA8
```

```
C
       CALCULATE PORTIONS OF All DUE TO Aloa, 4244, AND OTHER TYPES
С
       A10A = 0.0
       DO 2167 M=129,227,14
 2167 A10A = A10A+HDI(M)
       DO 2168 M=241.MO.14
 2168 \text{ Aloa} = \text{Aloa+SR(M)}
       A24A = 0.0
       DO 2169 M=241,283,14
 2169 \text{ A24A} = \text{A24A} + \text{HDI(M)} - \text{SR(M)}
       A24A = A24A/.75
       A38A = A11-A10A-A24A
       IF(438A)2170+2171+2171
 2170 A38A = 0.0
       A24A = A11-A10A
 2171 CONTINUE
C
С
       CALCULATE DIVISIONS OF Aloa+A24A+AND OTHER TYPES
C
       TRASH = (A10-AA10*.4435)*(A11/A10)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       All = All - TRASH
       IF(All_{\bullet}LE_{\bullet}O_{\bullet}O)All = 1.0
       Aloa = Aloa - TRASH
       IF(A10A.LT.0.0)A10A = 0.0
       IF(A10A.EQ.0.0)A11=A24A+A38A
       A10A = (A10A/A11) *AA10
       A24A = (A24A/A11) *AA10
       A38A = (A38A/A11) *AA10
       CALCULATE PORTIONS OF A13 DUE TO A12A.A16S.AND OTHER TYPES
c
       A12A = 0.0
       DO 2172 M=141.183,14
 2172 \text{ Al2A} = \text{Al2A+HDI(M)}
       DO 2173 M=197.MP.14
 2173 \text{ A}12A = \text{A}12A+SR(M)
       A16S = 0.0
       DO 2174 M=197.225.14
 2174 \text{ A16S} = \text{A16S} + \text{HDI(M)} - \text{SR(M)}
       A16S = A165/.625
       A26A = A13-A12A-A16S
       IF (A26A) 2175+2176+2176
 2175 \text{ A26A} = 0.0
       A165 = A13-A12A
 2176 CONTINUE
c
       CALCULATE DIVISIONS OF A12A, A16S, A26A
С
       TRASH = (A12-AA12*.5192)*(A13/A12)
       IF(TRASH.LT.0.0)TRASH = 0.0
       A13 = A13 - TRASH
       IF(A13 \cdot LE \cdot 0 \cdot 0)A13 = 1 \cdot 0
       A12A = A12A - TRASH
       IF(A12A.LT.0.0)A12A = 0.0
       IF (A12A.EQ.0.0) A13=A16S+A26A
       A12A = (A12A/A13)*AA12
       A16S = (A16S/A13)*AA12
       A26A = (A26A/A13)*AA12
C
       CALCULATE PORTION OF 415 DUE TO A144, A284, AND OTHER TYPES
       A14A = 0.0
       DO 2177 M=167+251+14
 2177 \text{ Al4A} = \text{Al4A+HDI(M)}
       DO 2178 M=265,MQ,14
 2178 \text{ A14A} = \text{A14A+SR(M)}
       A28A = 0.0
       DO 2179 M=265+307+14
 2179 \text{ A28A} = \text{A28A} + \text{HDI(M)} - \text{SR(M)}
       A28A = A28A/.75
       A42A = A15-A14A-A28A
```

```
IF (A42A)2180+2181+2181
  2180 A42A = 0.0
        A28A = A15-A14A
 2181 CONTINUE
        CALCULATE DIVISIONS OF A14A+A28A+AND OTHER TYPES
C
Ċ
        TRASH = (A14-AA14*.5075)*(A15/A14)
        IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
        A15 = A15 - TRASH
        IF(A15 \cdot LE \cdot 0 \cdot 0)A15 = 1 \cdot 0
        A14A = A14A - TRASH
        IF(A14A.LT.0.0)A14A = 0.0
        IF (A14A.EQ.0.0) A15=A28A+A42A
        A14A = (A14A/A15)*AA14
        A28A = (A28A/A15)*AA14
        A42A = (A42A/A15)*AA14
C
        CALCULATE PORTIONS OF A17 DUE TO A16A.A30A.AND OTHER TYPES
C
        A16A = 0.0
       DO 2182 M=179,277,14
 2182 \text{ Al6A} = \text{Al6A+HDI(M)}
       DO 2183 M=291,MR,14
 2183 \text{ A}16A = A16A+SR(M)
        A30A = 0.0
       DO 2184 M=291.333.14
 2184 \text{ A30A} = \text{A30A} + \text{HDI(M)} + \text{SR(M)}
        A30A = A30A/.75
        A44A = A17-A16A-A30A
        IF (A44A) 2185+2186+2186
 2185 \text{ A44A} = 0.0
        A30A = A17-A16A
 2186 CONTINUE
С
       CALCULATE DIVISIONS OF A16A, A30A, AND OTHER TYPES
C
С
       TRASH = (A16-AA16*.4910)*(A17/A16)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       A17 = A17 - TRASH
       IF(A17 \cdot LE \cdot 0 \cdot 0) A17 = 1 \cdot 0
       A16A = A16A - TRASH
       IF(A16A.LT.0.0)A16A = 0.0
       IF (A16A.EQ.0.0) A17=A30A+A44A
       A16A = (A16A/A17)*AA16
       A30A = (A30A/A17)*A416
       A44A = (A44A/A17)*AA16
C
       CALCULATE PORTIONS OF A19 DUE TO A18A+A22S+A32A
       418A = 0.0
       DO 2187 M=191,233,14
 2187 \text{ A18A} = \text{A18A+HDI(M)}
       DO 2188 M=247.MS.14
 2188 A18A = A18A+SR(M)
A22S = 0.0
       DO 2189 M=247,289,14
 2189 \text{ A22S} = \text{A22S} + \text{HDI(M)} - \text{SR(M)}
       A22S = A225/.75
       A32A = A19-A18A-A22S
       IF(A32A)2190,2191,2191
 2190 \text{ A32A} = 0.0
       A225 = A19-A18A
 2191 CONTINUE
С
       CALCULATE DIVISIONS OF A18A.A22S, AND OTHER TYPES
С
       TRASH = (A18-AA18*.5073)*(A19/A18)
       IF(TRASH_{\bullet}LT_{\bullet}0_{\bullet}0)TRASH = 0_{\bullet}0
       A19 = A19 - TRASH
       IF(A19 \cdot LE \cdot 0 \cdot 0)A19 = 1 \cdot 0
       A18A = A18A - TRASH
       IF(A18A.LT.0.0)A18A = 0.0
       IF (A18A.EQ.0.0) A19=A22S+A32A
       A18A = (A18A/A19)*A418
       A225 = (A225/A19) *AA18
       A32A = (A32A/A19)*AA18
```

```
CCC
      THIS COMPLETES CALCULATION OF AROMATICS BREAKDOWN
      VOLUME PERCENTS ARE NEXT CALCULATED
      V6A = 100.0*A6A/SUMAA
      V10S = 100.0*A10S/SUMAA
      V20A = 100.0*A20A/SUMAA
      VBA = 100.0*A8A/SUMAA
       V22A = 100.0*A22A/SUMAA
       V364 = 100.0*A36A/SUMAA
       V10A = 100.0*A10A/SUMAA
       V24A = 100.0*A24A/SUMAA
       V38A = 100.0*A38A/SUMAA
       V12A = 100.0*A12A/SUMAA
       V165 = 100.0*A165/SUMAA
       V26A = 100.0*A26A/SUMAA
       V14A = 100.0*A14A/SUMAA
       V28A = 100.0*A28A/SUMAA
       V42A = 100.0*A42A/SUMAA
       V16A = 100.0*A16A/SUMAA
       V30A = 100.0*A30A/SUMAA
       V44A = 100.0*A44A/SUMAA
       V18A = 100.0*A18A/SUMAA
       V225 = 100.0*A225/SUMAA
      V32A = 100.0*A32A/SUMAA
C
       AMONO = A6A+A8A+A10A
       VMONO = V6A+V8A+V10A
       \Delta DI = A12A + A14A + A16A
       VDI = V12A+V14A+V16A
       ATRI = A18A+A20A
       VTRI = V18A+V20A
       ATETRA = A22A+A24A
      VTETRA = V22A+V24A
      APENTA = A28A+A30A
      VPENTA = V28A+V30A
      \DeltaTHIO = \Delta10S+\Delta16S+\Delta22S
      VTHIO = V10S+V16S+V22S
      AUNID = A36A+A38A+A26A+A42A+A44A+A32A
      VUNID = V36A+V38A+V26A+V42A+V44A+V32A
C
      WRITE (6,2500)
      WRITE (6,2501) (TITLE(I), I=1,20)
       WRITE (6,2502)AMONO.VMONO.46A.V6A.A8A.V8A.A10A.V10A
       WRITE (6,2503)ADI,VDI,A12A,V12A,A14A,V14A,A16A,V16A
      WRITE (6,2504) ATRI, VTRI, A184, V184, A204, V20A
      WRITE (6.2505) ATETRA. VTETRA. A22A. V22A. A24A. V24A
      WRITE (6,2506) APENTA . VPENTA . A28A . V28A . A30A . V30A
      WRITE (6,2507) ATHIO, VTHIO, A10S, V10S, A16S, V16S, A22S, V22S
      WRITE (6,2508) AUNID, VUNID, A36A, V36A, A38A, V38A, A26A, V26A, A42A, V42A,
     1 A44A, V44A, A32A, V32A
 2500 FORMAT (1H1 9X,44HMASS SPECTRAL ANALYSIS OF AROMATIC FRACTIONS)
 2501 FORMAT (1H0+20A4//38X+27HCALC. ION SUMS VOLUME PCT)
 2502 FORMAT (1H0.8X.13HMONOAROMATICS.24X.F7.0.6X.F7.1/10X.13HALKYLBENZE
     1NES+15X+F7.0+6X+F7.1/10X+17HNAPHTHENERENZENES+11X+F7.0+6X+F7.1/
     210X.19HDINAPHTHENEBENZENES,9X.F7.0.6X,F7.1)
 2503 FORMAT (1H0.8X.11HDIAROMATICS.26X.F7.0.6X.F7.1/10X.12HNAPHTHALENES
     1.16x,F7.0.6x,F7.1/10x,28HACENAPHTHENES, DIBENZOFURANS,F7.0.6X,F7.1
     2/10X+9HFLUORENES+19X+F7.0+6X+F7.1)
 2504 FORMAT (1H0.8X,12HTRIAROMATICS.25X.F7.0.6X,F7.1/10X.13HPHENANTHREN
     1ES,15X,F7.0.6X,F7.1/10X,22HNAPHTHENEPHENANTHRENES,6X,F7.0.6X,F7.1)
 2505 FORMAT (1H0.8X.14HTETRAAROMATICS.23X.F7.0.6X.F7.1/10X.7HPYRENES.21
 1X.F7.0.6X.F7.1/10X.9HCHRYSENES.19X.F7.0.6X.F7.1)
2506 FORMAT (1H0.8X.14HPENTAAROMATICS.23X.F7.0.6X.F7.1/10X.9HPERYLENES.
     119X,F7.0,6X,F7.1/10X,17HDIBENZANTHRACENES,11X,F7.0,6X,F7.1)
 2507 FORMAT (1H0+8X+19HTHIOPHENO AROMATICS+18X+F7+0+6X+F7+1/10X+15HBENZ
      10THIOPHENES+13X+F7.0+6X+F7.1/10X+17HDIRENZOTHIOPHENES+11X+F7.0+6X+
      2F7.1/10X.22HNAPHTHOBENZOTHIOPHENES.6X.F7.0.6X.F7.1)
 2508 FORMAT (1H0.8X,22HUNIDENTIFIED AROMATICS.15X.F7.0.6X.F7.1/10X.37HC 1LASS I INCL WITH NAPH PHENANTHRENES/10X.8HCLASS II.20X.F7.0.6X.F7
      2.1/10X,9HCLASS III.19XF7.0,6X,F7.1/10X,8HCLASS IV,20X,F7.0.6X,F7.1
      3/10X,7HCLASS V.21X,F7.0,6X,F7.1/10X,8HCLASS VI.20X,F7.0,6X,F7.1/10
      4x,9HCLASS VII,19X,F7.0.6X,F7.1)
       RETURN
       END
```

10. Calculations

10.1 *Recording Mass Spectrum*—Read peak heights and the corresponding masses for all peaks in the spectrum of the sample. Use the data, along with sample identification, as input to the computer.

11. Precision and Bias

- 11.1 The precision of this test method as obtained by statistical examination of interlaboratory test results on a sample having the composition given in Table 5, is as follows:
- 11.1.1 Repeatability—The difference between successive test results obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the values shown in Table 5 only in one case in twenty.

11.1.2 *Reproducibility*—The difference between two single and independent results, obtained by different operators working in different laboratories on identical test material, would in the long run, in the normal and correct operation of the test method, exceed the values shown in Table 5 only in one case in twenty.

NOTE 5—If samples are analyzed that differ appreciably in composition from the sample used for the interlaboratory study, this precision statement may not apply.

11.2 *Bias*—The quantities determined are defined by the conditions employed in this empirical method, and a statement of bias is therefore not appropriate.

12. Keywords

12.1 aromatic; gas oil; mass spectrometry; petroleum

TABLE 3 PC-69-378 Test Spectrum for Gas Oil Aromatics Analysis

MASS	нт	MASS HT	MASS HT	MASS H	T MASS	ΗT	MASS	HT	MASS	HT	MASS	HT
70		70 22										
	126	79 33				128		532	84			181
86 94		87 7 95 48						694		510		216
102	_						99	53	100	54		158
		103 12				387		187		107		264
110	68	111 14	3 112 5	5 113 1	32 114	117	115	402	116	194	117	400
110	274	110104				_		_				
	270	119104						152	124	48		104
	134	127 17				287		655		272	133	662
	225	135 11			98 138			146	140	72	141	406
	297	143 49				212	147	289	148	102	149	94
150	83	151 14	0 152 24	7 153 2	29 154	163	155	486	156	264	157	438
	226	159 53				70	163	119	164	76	165	477
	204	167 26				209	171	318	172	140	173	316
	106	175 12				334	179	414		204		312
	160	183 28				98	187	218	188	96	189	
190	143	191 29	7 192 26	2 193 31	80 194	200	195	318	196	132		191
198	98	199 17			58 202	300	203	253	204	144	205	307
	255	207 31			40 210	117	211	168	212	90		198
214	93	215 37		3 217 23	25 218	156	219	269		216		238
	133	223 16		4 225]	54 226	184	227	181		200		320
230	206	231 24	4 232 17	1 233 j	97 234	162	235	172		112		150
		_									_	• - "
	113	239 25				174	243	251	244	196	245	214
	167	247 15			34 250	132	251			192		200
	124	255 17		2 257 19	90 258	173	259	156		152		131
	121	263 14		4 265 1	62 266	156	267			128		156
270	155	271 14	272 14	4 273 13		142	275			149		115
										• '		110
	130	279 13		3 281 13	33 282	132	283	127	284	133	285	114
286	127	287 9		289 1		123	291	94		125		112
294	134	295 119	5 296 12	7 297 10		122	299	95		130	301	82
302	127	303 93	3 304 11:			122	307	93		123	309	95
310	120	311 97		-		120	315	78		116	317	77
					- 01,	1-0	913		310	110	311	,,
318	106	319 7	320 116	321 8	322	115	323	80	324	118	325	82
326	118	327 7		_		112	331	68		101	333	68
334	109	335 79				108	339	75		108	341	67
342	110	343 62			51 346	98	347	61	348		349	
350	108	351 69				100	355	57	356		357	75 54
		_				100	337	,,	250	104	351	56
358		359 54			362	96	363	69	364	102	365	73
366		367 63			56 370	98	371	50	372	95	373	49
374	84	375 47	' 376 AA	377 5	4 378	90	379	55	380	90	381	54
382	88	383 49	384 91	385 4	6 386	87	387	44	388	76	389	43
390	80	391 47	392 84	393 4	8 394	84	395	48	396	80	397	45
398	84	399 42	400 81	401 4	402	67	403	38	404	70	405	41
406	76	407 42	408 75	409 4	2 410	72	411	40	412	77	413	38
414	76	415 38	416 60	417 3	418	63	419	34	420	66	421	38
422	66	423 38	424 64	425 3	6 426	68	427	34	428	66	429	33
430	54	431 30	432 56	433 3	3 434	59	435	33	436	59	437	34
												-
438	57	439 32	440 61	441 3	10 442	58	443	30	444	47	445	27
446	49	447 28		449 3	10 450	54	451	30	452	52	453	28
454	54	455 27			6 458	41	459	23	460	44	461	25
462	46	463 26	464 47	465 2	6 466	45	467	25	468	48	469	24
470	44	471 23	472 36	473 2	1 474	38	475	22	476	40	477	22
478	41	479 23		481 2	282	40	483	21	484	38	485	20
486	31	487 17		489 1	9 490	35	491	19	492	35	493	50
494	34	495 18	496 35		8 498	33	499	17	500	26	501	15
502	28	503 15	504 30	505 1	7 506	30	507	18	508	29	509	17
510	30	511 16	512 28	513 1	8 514	25	515	13	516	24	517	14
_					-							
518	25	519 14			4 522	24	523	14	524	24	525	14
526	24	527 13		529 1	1 530	20	531	12	532	20	533	12
534	21	535 12			1 538	20	539	11	540	18	541	11
542	15	543 9			1 546	18	547	10	548	18	549	10
550	16	551 9			9 554	14	555	3	556	11	557	7
558	11	559 8		561	8 562	14	563	8	564	12	565	8
566	12	567 9			8 570	9	571	6	572	10	573	8
574	10	575 6			6 578	9	579	6	580	ĵ	581	6
582	8	583 5			5 586	7	587	5	588	7	589	5
590	8	591 6			4 594	7	595	4	596	6	597	4
						•	*	•		_	J - 1	
598	5	599 4	600 6	601	4 602	6	603	4	604	6	605	4
606	5	607 3			3 610	4	611	3	612	4	613	3
614	4	615 4		-	3 618	4	619	3	620	4	621	3
622	4	624 3		-	3 630	3	632		9999	7	JEI	J
			_			_			~			

TABLE 4 Mass Spectral Analysis of Aromatic Fractions PC-69-378 Test Spectrum for Gas Oil Aromatics Analysis

		Calc. Ion	Sums	Volume	%
	Monoaromatics:		28498.		38.9
	Alkylbenzenes	9703.		13.3	
	Naphthenebenzenes	9017.		12.3	
	Dinaphthenebenzenes	9778.		13.4	
	Diaromatics:		19158.		26.2
	Naphthalenes	4774.		6.5	
	Acenaphthenes,	6576.		9.0	
	dibenzofurans				
	Fluorenes	7809.		10.7	
	Triaromatics:		9625.		13.1
	Phenanthrenes	6156.		8.4	
	Naphthenephenanthrenes	3470.		4.7	
	Tetraaromatics:		6070.		8.3
	Pyrenes	3980.		5.4	
90.	Chrysenes	2090.		2.9	
	Pentaaromatics:		1658.		2.3
	Perylenes	1293.		1.8	
	Dibenzanthracenes	366.		0.5	
	Thiopheno Aromatics:		1872.		2.6
	Benzothiophenes	565.		0.8	
	Dibenzothiophenes	968.		1.3	
	Naphthobenzothiophenes	339.		0.5	
	Unidentified Aromatics:		6322.		8.6
	Class I incl with				
	Naphthenephenanthrene	es			
	Class II	614.		0.8	
	Class III	838.		1.1	
	Class IV	3431.		4.7	
	Class V	546.		0.7	
	Class VI	281.		0.4	
	Class VII	612.		0.8	

TABLE 5 Precision Summary Based on Cooperative Data

	Vol %	σ_r	σ_R	r	R
Alkylbenzenes	13.7	0.3	1.0	1.2	3.0
Naphthenebenzenes	13.3	0.1	1.1	0.5	3.3
Dinaphthenebenzenes	13.7	0.2	0.4	0.9	1.1
Naphthalenes	6.7	0.2	0.8	0.9	2.3
Acenaphthenes/dibenzofurans	9.0	0.1	0.2	0.5	0.5
Fluorens	10.7	0.1	0.2	0.3	0.6
Di ii	0.0	0.4			4.0
Phenanthrenes	8.6	0.1	0.3	0.2	1.0
Naphthenephenanthrenes	4.5	0.2	0.4	0.7	1.2
Pyrenes	5.7	0.1	0.5	0.3	1.6
Chrysenes	2.8	0.1	0.5	0.5	1.0
Chrysenes	2.0	0.2	0.4	0.5	1.1
Perylenes	1.7	0.1	0.2	0.3	0.6
Dibenzanthracenes	0.4	0.1	0.1	0.2	0.4
Benzothiophenes	1.0	0.2	0.4	0.8	1.1
Dibenzothiophenes	1.5	0.1	0.3	0.3	0.8
Naphthabenzothiophenes	0.5	0.1	0.3	0.3	1.0
01 111111111111111111111111111111111111	0.4	0.4	0.4		
Class II Unidentified	0.4	0.1	0.4	0.3	1.1
Class III Unidentified	0.6	0.1	0.4	0.4	1.2
Class IV Unidentified	4.1	0.2	0.5	0.6	1.6
Class V Unidentified	0.5	0.1	0.3	0.5	8.0
Class VI Unidentified	0.2	0.1	0.1	0.3	0.4
Class VII Unidentified	0.4	0.2	0.2	0.5	0.7

 $[\]sigma_r$ = repeatability standard deviation

 $[\]sigma_R$ = reproducibility standard deviation r = repeatability R = reproducibility

D 3239 – 91 (2006)

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).